

Initial Radiometric Performance and Data Quality of the OLI and TIRS Landsat-8 sensors

Brian Markham, NASA/GSFC

Landsat - 7/8 Calibration Team

USGS

- Ron Hayes/SGT (Lead)
- Ron Morfitt /SGT (Technical Lead)
- Esad Micijevic /SGT
- Pat Scaramuzza /SGT
- Kelly Vanderwerff /SGT
- Obaidul Haque / SGT
- James Storey /SGT (Geometry Lead)
- Mike Choate /SGT
- Don Moe/SGT
- Mark Lubke/SGT
- Anna Hartpence/SGT

UNIVERSITY AFFILIATES

- Dennis Helder (SDSU)
 - Jake Brinkman, Nischal Mishra, Frank Pesta, Larry Leigh
- Jeff Czapla-Myers, Stuart Biggar (U of A)
- John Schott (RIT)
 - Nina Raqueno, Aaron Gerace Simon Hook (JPL)

NASA

- Brian Markham (Lead)
- Ed Kaita /SSAI
- Raviv Levy /SSAI
- Julia Barsi /SSAI*
- Lawrence Ong /SSAI
- Matt Montanaro /Sigma Space
- Phil Dabney (Instrument Scientist)
- Jeff Pedelty

TIRS

- Dennis Reuter (Instrument Scientist)
- Allen Lunsford
- (Matt Montanaro)
- Zelalem Tesfaye
- Brian Wenny

OLI

- Ed Knight
- Geir Kvaran
- Kenton Lee

Outline

- OLI Radiometric Performance
 - Noise
 - Stability
 - Uniformity
 - Absolute Calibration
 - Artifacts
- TIRS Radiometric Performance
 - Noise
 - Stability
 - Uniformity
 - Absolute Calibration
 - Artifacts
- Upcoming reprocessing effort
- L-8/L-7 Comparative Images

OLI

- Noise
 - Dark
 - SNR
- Stability
 - Dark
 - Responsivity
- Uniformity/Relative Calibration
- Absolute Calibration
- Artifacts
- Summary

OLI Dark Noise - Green

OLI Dark Noise - Cirrus

OLI Signal-to-Noise Ratio

- Noise model generated from shutter, lamp and diffuser data $S_i^2 = a + b * Q_i$
 - Estimated monthly, once enough collects have been acquired

Signal-to-Noise Ratio

- The model is interpolated to a defined typical radiance level (L_{typ}), per-band
- OLI outperforms ETM+ by 6 − 12 x

Band	ETM +	OLI	"Typical"	ETM+ SNR	OLI SNR
	Band	Band	Radiance Level	(band	(band median,
	Number	Number	(Ltyp)	average, low	at Ltyp)
			$[W/m^2 sr um]$	gain, at	
				Ltyp)	
CA	-	1	40	-	234
Blue	1	2	40	39	361
Green	2	3	30	37	299
Red	3	4	22	26	223
NIR	4	5	14	34	199
SWIR1	5	6	4	36	262
SWIR2	7	7	1.7	27	331
Pan	8	8	23	16	146
Cirrus	-	9	6	-	161

Noise Stability

Stability - Dark Level

Radiometric Stability

- Characterized using response to lamp pairs, solar diffusers and lunar acquisitions +
- Monitor band-average response over time.

Radiometric Stability

 Change to lamp response is generally echoed in the change to solar response, indicating the change is in the instrument, not the calibration device.

Band	Lamp	Change relative	Diffuser	Change
	Radiance	to Lamp [%]	Radiance	Relative to
	$[W/m^2 sr um]$		$[W/m^2 sr um]$	Diffuser [%]
CA	5.8	-0.62	500	-0.69
Blue	9.3	-0.30	517	-0.26
Green	18.6	0.10	476	0.11
Red	30.8	0.23	403	0.20
NIR	47.7	0.13	245	0.18
SWIR1	33.4	0.01	61.4	0.18
SWIR2	13.9	-0.05	19.4	0.14
Pan	22.6	0.03	455	0.17
Cirrus	42.8	0.03	94.0	0.10

OLI CA Band 1 Trends: Band Average

Rawer data Page_15

OLI Green Band 3 Trends: Band Average

OLI SWIR2 Band 7 Trends: Band Average

Stability – Ongoing Studies

- Improving precision of Lunar calibration
- Examining repeatability of pointing for solar diffuser measurements
- Examining stability of lamps, photodiodes, temperatures and telemetry

Uniformity

- Challenge due to the large numbers of detectors in each band, high precision of data and low level nonlinearity in the system.
- Various metrics attempt to capture individual detector variation (streaking), groups of detectors/FPM's (banding) and full field of view variability
- Used pre-launch characterization for initial processing
 - Processed scenes generally visually very good
 - On-orbit images have some streaking and banding.
 - Magnitude of non-uniformity generally <0.5%
 - Visible in uniform scenes, particularly CA band, SWIR bands

Uniformity

- Two updates to the calibration parameters have decreased striping and banding.
- Aug 9, 2013: Linearization function update
 - Based on reanalysis of prelaunch test data
 - Improves SWIR bands
- Aug 21, 2013: Relative Gain update
 - Based on on-orbit solar diffuser data
- Upcoming: Correcting edge detector relative gains

Egypt: DOY 169, 174/45 CA band, FPM1+ Original calibration parameters

File Overlay Enhance Tools Window

Egypt: DOY 169, 174/45 CA band, FPM1+ Updated calibration parameters

Greenland: DOY 118, 16/4 Green band, FPM3 Original calibration parameters

000

File Overlay Enhance Tools Window

File Overlay Enhance Tools Window Greenland: DOY 118, 16/4 Green band, FPM3 Updated calibration parameters

000

Linearity feature, not relative gain

Greenland: DOY 118, 16/4 SWIR1 band, FPM9 Original calibration parameters

000

Greenland: DOY 118, 16/4 SWIR1 band, FPM9 Updated calibration parameters

000

File Overlay Enhance Tools Window

Uniformity

- Discontinuities still exist at the boundaries between adjacent FPMs
 - In some cases, as large as 1%
- Result of some combination of
 - Slight view angle differences between odd and even focal plane modules in conjunction with illumination angles and bidirectional reflectance
 - Errors in pre-launch relative calibration
 - Errors in pre-launch linearity characterization
 - Changes in relative calibration since launch
- Studies are ongoing.

Upcoming Changes/Ongoing Studies

- Changing to pure Look-up-table linearization procedure
 - Increased flexibility
 - Should improve low radiance level non-uniformity
- Reexamining linearization assumptions/procedure
 - Parsing detector and electronic linearity to allow updating only electronic linearity on orbit
 - Special solar diffuser collect during solar eclipse
- Reexamining diffuser reflectance "non-uniformity" in diffuser data processing
 - Initially based on heliostat data
 - Testing U of A measurements as alternative
- Side slither, scene statistics, overlap statistics
 - Alternates to solar diffuser

Band

Absolute Calibration Investigations/Updates

- Upcoming- correcting cirrus band reflectance calibration by ~7%
- Reviewing prelaunch radiance calibration process (for SWIR-2 band in particular) and transfer to orbit test
- Reviewing reflectance calibration

OLI Artifacts

- No coherent (a.k.a. pattern noise) observed
- Spatial artifacts (i.e., ghosting, crosstalk) << requirements

OLI Band 6 (SWIR 1)
st/ halo

OLI Radiometry Summary

- OLI performing well since launch
- Daily acquisitions of the working lamp pair and acquisition of the working solar diffuser every eight days provide useful characterization of OLI
- OLI outperforms ETM+ in SNR by an order of magnitude
- Stability exceeding requirements; no evidence of significant contamination/degradation of instrument or calibrators
- Uniformity has been improved recently, reducing striping by half
 - Discontinuities at FPM boundaries still remain
- Absolute Radiance Calibration generally within ±2% of vicarious measurements – SWIR2 an outlier at 5%
- Absolute Reflectance Calibration generally within ±2% of vicarious measurements – CA and Blue at 4-5%

TIRS

- Noise
- Stability
 - Transfer to Orbit
 - Over Acquisition Interval
 - Over Mission
- Relative Calibration
- Absolute Calibration
- Artifacts
- Summary

Focal Plane Layout

TIRS On-Orbit Performance: Noise

- Variation of signal to a constant source
- Noise expressed as a variation in radiance: NE Δ L
- Noise expressed as a variation in brightness temperature: NE Δ T
- View OBC at fixed temperature for one minute (4200 frames)
 - Subtract background from each frame
 - \succ convert each frame to radiance -> take standard deviation of each detector as the NE Δ L
 - \succ convert each frame to temperature -> take standard deviation of each detector as NE Δ T

TIRS On-Orbit Performance: Noise (2)

• TIRS meets NE∆L and NE∆T requirements for source @ 295K by about a factor of 8; Factor of ~3 better than ETM+ (similar results for other temperatures)

TIRS Stability: Transfer to Orbit

- Relative ratio of On-orbit to Pre-flight OBC signal illustrates the effect of the contamination in TIRS 2 (band 11)
- Relative ratio of the OBC signal of DOY 165 to DOY 087 illustrates that the contamination has been constant over that time

Will be continuously monitored throughout operations

TIRS On-Orbit Performance: Background Stability over Interval

- Observed the variation (std.) of the background signal over the same 36 min collect.
- Express the variation in background as a change in radiance @ 300 K and as a change in brightness temperature @ 300 K

One-sigma variation of ~0.01 radiance units or 0.1 K implies stable background.

TIRS On-Orbit Performance: OBC Response Stability over Interval

- Collected image data of OBC @ 270 K for 36 continuous minutes.
- Observed the variation (standard deviation) of the radiance over that time period.

- One-sigma variation is approx. 0.2% of the average radiance
 - TIRS requirement states that this variation should be less than 0.7%
 - Only slightly higher than within scene noise

TIRS On-Orbit Performance: Stability over mission life

- Calibration collects before and after Earth imaging (typically two collects/orbit; 14.5 orbits/day)
- Means and Standard deviations of each collect stored in Image Assessment System (IAS) database
- No long term degradation/contamination evident
 - Band 10 Gain Trends
 - 0.06%/100 days SCA 1
 - + 0.05%/100 days SCA 2
 - 0.04%/100 days SCA 3
 - Band 11 Gain Trends
 - 0.01%/100 days SCA 1
 - + 0.08%/100 days SCA 2
 - 0.02%/100 days SCA 3

TIRS: On-Orbit Performance: Spatial Uniformity

- Banding/streaking requirements meant to assess the spatial uniformity across the field of view for an Earth scene
- Metrics very dependent on the scene
- As one example, constructed 'uniform' scene from statistics from an ocean image

TIRS On-Orbit Performance: Spatial Uniformity (2)

 For this particular scene, TIRS meets the banding/streaking uniformity requirements

200

400

600

800

1000

detector

1200

1400

1600

1800

TIRS On-Orbit Performance: Spatial Uniformity (3)

- Other scenes exhibit banding artifacts. Example: Salton Sea in California
- Banding between the three focal plane arrays as high as 3% in band 11

Banding between arrays

Currently working to understand this behavior

Absolute Calibration: Comparison to Surface Measurements propagated through Atmosphere

TIRS is reporting higher temperatures than expected (by 2 K +) Significant variability in results, particularly in band 11 (12 micron band)

Understanding TIRS Non-Uniformity and Absolute Calibration Variability

- TIRS non-uniformity varies with scene content
- Significant variability in differences between TIRS calibration and vicarious results
- Working hypothesis is that this is the same phenomena: TIRS out-of-field (OOF) response or ghosting
 - TIRS out-of-field response modeled and partially characterized prior to launch no significant ghosts predicted or found within telescope FOV
 - On reexamination of pre-launch, some evidence of further out-of-field ghosts
- Two pronged approach
 - Use moon as a source for on-orbit ghost characterization; assess if magnitude of ghosts is sufficient to explain variability (optical modeling)
 - Data acquired while slewing to the moon have shown weak (<0.4%) ghosts in TIRS data beyond the focal plane assembly extent FOV
 - These slews sample a very small range of the TIRS OOF response
 - Special TIRS lunar ghosting collects scanned a larger range of angles around moon initial examination consistent with an annular ghosting pattern
 - Continue characterizing variability using vicarious methods

TIRS Extended Lunar Scans (Day 289)

Lunar position in FOV Band positions in FOV В Α Angle From Boresight About Y (rad)

TIRS Absolute Calibration under study

- Vicarious Calibrations
 - Multiple variables
 - Location in focal plane
 - Temperature
 - Scene content/contrast; day/night
 - Data limitations
 - Fixed cal sites routinely occur at same location in focal plane
 - Point off-nadir for some acquisitions (nighttime) to move location with focal plane
 - Automated access to TIRS data established
 - Increased nighttime acquisitions over coastal US regions
- Implementing Band 10 bias adjustment of -0.32 W/m2 sr μm
 - Reprocessing of already acquired data

Summary

- TIRS is performing well in terms of noise and stability when viewing on-board calibration sources.
 - Large margin on NE Δ L and NE Δ T and stability requirements
- TIRS meets banding/streaking uniformity metrics on certain Earth scenes yet fails these metrics on others.
- On-going analysis on banding/streaking and absolute calibration issues
 - Special lunar collects to characterize ghosting Reexamination of TIRS stray light model
 - Enhanced vicarious analyses

CPF Update/Reprocessing Summary

TIRS

 Change band 10 absolute calibration by -0.32 W/m² sr μm

OLI

- Change Cirrus band reflectance calibration by ~7%
- Increase precision of radiance to reflectance conversion coefficients (<0.3%)
- Adjust edge detector relative gains

Timing

- This week
- Completion

Image Examples of Enhanced L8 Performance

Landsat-8 Enhancements include:

- (1) refined spectral bandpasses to avoid atmospheric absorption features or to provide better contrast,
- (2) additional spectral bands at 443 nm for coastal and aerosol studies and **1375 nm for cirrus cloud detection**,
- (3) splitting the ETM+ thermal band into two spectral bands to allow better surface temperature retrievals,
- (4) 12 bit radiometric resolution as opposed to 8-bit,
- (5) sufficient **radiometric range** to cover 100% diffuse reflecting targets at the minimum solar zenith angle observed with the 10 AM equatorial crossing orbit
- (6) improved noise performance.

Panchromatic Bandpass Refined

Landsat-7 ETM+

Landsat-8 OLI

New Cirrus Detection Band

OLI natural color (4,3,2)

Cirrus band (9)

Increased Saturation Radiances

Saturated

over snow

L7 ETM + Pan Band

Improved Thermal Band Noise

Landsat-7 ETM+ Band 6

Landsat-8 (TIRS) Band 10

LDCM OLI Natural Color (4,3,2)

